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I INTRODUCTION

In this work we examine the consequences of finite beam emittance

and discuss some of the requirements on the beam transport system in a free

electron laser. We will not discuss the operation of the FEL, as an

extensive theory of the device is presented in a companion paper. I We

concentrate on beams from linear accelerators, but the transport theory is

quite general and may be applied to beams from (or in) a storage ring. The

only original work is contained in the final section, which treats focusing

by shaping the magnetic field in a planar wiggler.

In Section II we discuss a fundamental limitation placed on the

beam current density by the finite emittance and the resulting spread in

axial velocity. Section III is devoted to continuous solenoidal

focusing. The treatment is based on the beam envelope equation. A

derivation of this equation may be found in Ref. 2. The units used in this

york are lengths in cm, magnetic fields in kG, and emittance in cm-rad.

All currents are in kA except where clearly stated as A.

We examine the possibility of focusing the electron beam vith the

magnetic field of the wiggler in Sec. IV, and ahoy a simple wiggler magnet

design that demonstrates the concept. The treatment employs the theory of

Courant and Snyder
.
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For a bee In vacums with a radius I , mIttnce C and

current I , the envelope equation is

d2R 2 - 21 (kA) + t2

In this equation Y is the energy of the particles in units of the rest

energy and y2 a (1 - 02)" 2 . The quantity &2(s) characterizes the

external focusing forces. In Ref. 2, R is the root man square radius of

the beam and E has a precise mathematical definition. In this york ye

simply regard R and E as measurable quantities.

Depending on the values of the parameters I,1,c, and R , there

are tvo extreme regions of interest. One of these is known as the "space-

charge" dominated region. It should be knovn as the "self-force" region or

some such, but in accelerator jargon all coherent electromagnetic self-

forces tend to be lumped into "space-charge". In this region

C2 < 21R2 /17(yo)3 so that the second term on the right hand side of

9q. (1.1) my be neglected. he other region is called the emIttance-

dominated region. In this region the first term on the right hand side of

Eq. (1.l) is neglected. For a given E, 1, and Y, the ratio of the tvo

term Is determined by the beam radius. We shall see that for current

densities of interest in operation of an FEL, the beam is quite generally

in the smittance-4ominated region.
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II DITTANCE AND AXIAL VELOCITY SPRAD

The term "emittance" has its roots in beam transport theory. in

general, it is defined for each transverse direction (x and y), and my be

different in the tw directions. The particles In the beam lie within a

four dimensional volume in x,vdx/dz, and dy/dz • If the distribution

is integrated over y and dy/dz , w are left vith a distribution in x

and dx!dz . The elipse enclosing the distribution has area equal to

we . Measured values are quoted as the fraction of the beam that lies
x

vithin a given area, such as "90% of the beam particles are enclosed in

30 mrad-cm."

In an "ideal" accelerator the transverse forces on the particles

are linear in the transverse direction. These forces include those

focusing and accelerating the particles. The area in x-Py (or YPy)

phase space remains a constant while the longitudinal mouentum Pt

increases as Y. Thus dx/dz (or dy/dz) and the emittance decreases as

('v) " I . It is comon practice to introduce the normlized emittance

C 0 Y BY . In an ideal accelerator E is constant throughout the
0 o

acceleration process. No real accelerator can meet the criterion of linear

transverse forces. In addition, the transverse forces must include those

arising from the particles' coherent electromagnetic self-fields, ich are

not linear. It should be noted that the dependence of C on energy in a

storage ring does not follow the (YB)' 1  variation because of the effects

r3



of smymhrotrou radiation. If the beam is asiimtbally rewtric we have

I m I a C , the quantity that appears In Eq. (1.1).

When we consider the emittance of beos from existing rf linacs as

wall as induction linac. ve discover a serious limitation on the current

density of beaus from the devices when employed in an FEL. We first

consider a bean in which all particles are travelling in the z direction

with no transverse velocity component. It is the axial speed that

determines whether or not a particle can be trapped in stable phase and

radiate coherently in an TEL. If the particle has no transverse velocity

but has a deviation 6Y from the value Y of the resonant particle, itr

has a deviation 6v in axial speed given by

6y 2 v 6vz 2 (2
" rT =
r c

On the other hand, if a particle has the proper value of Y , but has a

transverse speed vx (or Vy) and total speed v , that particle has a

deviation in axial speed given by

6v tv W V2/2v2  (2.2)z Z

?or a beam with emittance c , the maximum value of V1 /v is

C divided by the maximum value of x F For azimuthally symmetric beams,

the total spread Av in axial speed is given by

6Vsa /C *2 /a2 (2.3)



We compare a wonoenig*tlc boam with an emittence 9 with a zero mittance

been that has an energy spread A4 to define a relation

(',C/R -(26)/)) *quiv

meaninS that the monoenergetic beas has a bv equivalent to that of the

-cold beas vith energy spread a • A orte precise relation is found by

Including the transverse speed tn the equations of motion of particles in

an TEL. This relation is

I(2.5)

in which the quantity i has the definition

"-l+ V • Wo
\ 2.2."

In Eq. (2.6) 9 is the electron charge, a the rest esas, b and

t the mgnitude and wave length of the wiggler smagnetic field. Squation

(2.6) 12 valid for a helical wiggler. For a planar wiggler B. is the

root man square value. Values of 0 are typically 1 to .

Wepoint out that the effective AY/'Y In the device arises from

three sources, and way be expressed in the form

=S
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in hich the first term on the right hand side denotes the actual spread in

anergy in the beau and the second term is expressed by Eq. (2.5). The

third tere on the right hand side denotes the change in axial velocity

arising from the transverse variation in the viggler field, and vill depend

on the particular viggler configuration. In this work ve deal only vith

the contribution from the amittance, and 6/ in this section and In

Section III refers to this contribution. The contribution from variations

in the viggler may be comparable to that from the emittance and is

discussed briefly in Section IV.

For a large number of existing rf linacs, there is an empirical

relation betveen the measured values of E and the average beam current

I • The relation is

C o y~c - 0.3 1l!2W cm-rad. (2.7)

ith I the time average current during the mcropulse from the

accelerator.

This equation means that the output values of I, 1, and E for

any individual accelerator are related in this manner. The coefficient

varies by a factor of 2 or 3 mong rf linacs. Iby rf liuacs have several

different modes of operation. The average current and the energy are

6 4



different In different modes. Generally Eq. (2.7) is obeyed for any mode,

but *$ain the coefficient may vary by a factor of 2 or 3. The value of 0.3

in Sq. (2.7) represents a lover limit for rf linacs currently in operation.

The average current out of rf linacs is typically 10's of mA to as

much as a fev A. But Eq. (2.7) comes close to fitting measured values from

the Astron linear induction accelerator. The current was constant over the

pulse duration of about 250 ns. Measurements of the emittance of the beam

from that device at Y - 11 and I - 300 A to 500 A indicate that, for

this device, the coefficient 0.3 is a factor of 2 too large.

A possible explanation of the validity of Eq. (2.7) over 5 orders

of magnitude in current may be stated as follows: all injectors, sources,

or guns used in electron linacs inject approximately the same density of

particles into the four dimensional phase space x,y,Px,Py . The volume is

thus proportional to the total current I , and the area in x-Px or

y-Py phase space is proportional to 11/2

We note that the total current I is approximately related to the

current density J by

SWR2J (2.8)

We use this relation in Eq. (2.7) to obtain
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(0OCA) 2  .09 J (1A/cm2 ) (2.9)

by using 1q. (2.5) we can nov deterlne what time average current density

J. corresponds to an axial velocity spread equivalent to a fractional

energy spread of It. For w" - 2 we find

3 - 140 A/cV2 . (2. 10C

For rf linacs the peak current ay be orders of magnitude greater than the

average current.

There is nothing unique about the value of I2 for /) , it is

merely illustrative. The input laser pover per unit area necessary to trar

particles in stable phase varies as (W4 and apparently varies as

if the transverse velocity spread is the major contributor to the spread in

axial speed. Clearly lovering the emittance by a factor of 2 or so would

be desirable. lut in order to achieve average current densities of several

hkA/cm 2 , we must have an emittance an order of magnitude lover than

typically achieved to date.

One further observation is in order with regard to the current

density limitations. The value of Jc is independent of the bea energv

if yt is really a constant. As pointed out earlier, in any given

accelerator this is an ideal situation not likely to be acbi emd, so that

the value of Jc my mell decrease with I . On the other hand, the value

. . .. z



of the actual energy spread AY can reasonably be expected to remain

rather constant, so that 61/1 decreases with nrergy.
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II SOM~OIDAL TRANSPORT

We first consider transport in a continuous axial magnetic field

B that is radially uniform. In t his transport system the quantity K2  in

Eq. (1-1) is independent of z and given by

K2 . (2p)-2 ,(3.1)

in which P is the radius of gyration the beam particles would have in the

field B if their motion were entirely perpendicular to the field. In

Gaussian units, ye have

P R (3.2)

As an engineering formula, wie use

p(cm) - 1.7 Y$/B(kG) .(3.3)

The equilibrium., or "matched' radius of the beam is found by setting

d2R/dz2 a0 . Wie Introduce the quantities Rs and R E by the definitions

(lengths In cm, I in kA ,Cin cu-red):

R2 8jp 2/17(y$) 3, (3.4)

ILA



12 - 2c . (3.5)

Physically, Rs is the matched radius of a "zero emittance" bean and RE

in the matched radius of a "low current" beam (i.e., a bean with finite

emittance and current I sufficiently small that it is in the amittance

dominated region). Since RE varies as B-1/ 2 vhile R. varies as

5-1 , for any values of I, , and E the ratio of these two quantities

may be adjusted by changing the value of B In term of R* and

RE ,the matched radius It is given by

R2 (R2 /2) + [(Ra /4) +.4l/ (3.6)
m s s

If the emittance of the beam is zero, motion of particles in the

beam is laminar. The terms "laminar flow" and "Brillouln" flow are used to

describe this motion. The simple treatment here does not describe exactly

the condition for laminar flow for relativistic particles. A thorough

treatment of a zero emittance relativistic beam in a uniform axial magnetic

field has been done by Reiser 4. The results of Ref. 4 show that all

particles in the beam have the same axial speed. Particles remain at a

constant radius and execute helical orbits, but the azimuthal velocity

varies vith r • The particles' kinetic energy as vell as the charge

density P , axial and azimuthal current densities J. and j. , and field

components Er , 36 , and B. all are functions of radius In Reiser's

theory. But the axial speed Is independent of radius.
1

12
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The variation of kinetic energy (i.e. variation of Y) arises from

the electrostatic potential of the charge distribution in the beam. For a

beam with radially uniform charge density and v a c , the difference in

potential energy between the axis of the beam and the edge of the beam is

30 kV per kA of beam. In laminar flow the difference in kinetic energy is

manifest in radially varying azimuthal speed, while the axial speed remains

constant. This ideal model can never be realized in practice because all

real beams have a finite emittance. If the magnetic field is adjusted so

that R << R, (i.e., transport in the space-charge dominated regime),

the condition of Brillouin flow can perhaps be approximately achieved.

Under such circumstances it might be reasonable to assume that the change

in potential across the beam leads to a negligible spread in axial

velocity. The actual situation would depend on the details of the electron

distribution in six dimensional phase space (or 5 dimensional if the beam

is indeed azimuthally symmetric). But even in the space-charge dominated

regime, a finite emittance gives a spread in axial velocity according to

the relation (2.5). If the empirical formula (2.7) holds, then Eqs. (2.9

and 2.10) are still valid. By transporting the beam in the space-charge

dominated regime the axial velocity spread from the potential drop across

L. the beam may be reduced to a negligible value, but the velocity spread from

the emittance still leads to a maximu current for an equivalent AlI/ , as

expressed in Eq. (2.10) for an equivalent Ay/y of 10- 2.

We will now present some examples of beam radii, solenoidal

magnetic field amplitudes, and beam currents. In the first ezmples we

L assume that the mIttsnce is given by Sq. (2.7), and we are considering an

13
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Induction linac or any other accelerator that produces constant current

during the pulse. We set d2R/dz 2 - 0 in 3q. (1.1) and employ Zqe. (2.7,

3.1, and 3.3.) to obtain

B2R 2 . 11.56 IOkA) [(2/17yf) + (0.09/R2 ), . (3.7)
3 3

If we use Eqs. (2.5 and 2.9) vith w * 2 we can express I In terms of

the equivalent 6'1/' allowed. We have

I(kA) - 44 (A'Y/Y) R2 (3.8)

and Eq. (3.7) becomes

B2 . 508 (I/M) L(2/17Y) + (0.09/R2 ) . (3.9)

We ma calculate the ratio (R /R )2 from Eqs. (2.7. 3.1, 3.4 and

3.5). We obtain

(K ,a8)2 - 3yt/4I1 1/ 2 . (3.10)

This ratio is a measure of the extent to which the beam is being

transported In the space-charge dominated regime. (Small values indicate

space-charge regime, large values Indicate emittance regime.) Values of

this ratio along with values of 1. 1, and 3 are given in Table 1. for

7 a 10 and A/I * 10-2 . Prom the values of (I /9)2 we see that the

bess is in the emittance dominated regime even for this low value of I •

14



Any value of i higher than this will result only slightly smaller values

of I , since the first term on the right hand side of Sq. (3.9) is uch

smaller than the second term for I - 10 and decreases with increasing

values of Y

In the emittance dominated regime the AY/ arising from the

potential drop across the beam must be considered, but it amounts to only

3 a 10-3 for I - 440A

TABLE I

Values of I,BR and (R E /Rs)2 calculated from Eqs. (3.9 and

3.10) for , - 10, L1/ - 102 Note that I is in amperes.

R,(cm) I(A) B(kG) (R E/R )2

0.2 17.6 3.4 190.

0.5 110. 1.37 30.

1.0 440. .72 8.0

We nov repeat the above calculation, but reduce the emittnce by

order of magnitude. We assme that c still varies as 11/2 , but change

the coefficient in Sq. (2.5) frop 0.3 to 3 a 10- 2 • he equation analogous

to 2q. (3.8) is nov

15



I -. 4 1 103 (AI/Y) t2  (3.11)

and 1q. (3.9) becomes

B: 5.08 x 104 (6 /1),(2/170) (9 1 10-4xR . (3.1 )

while (i IR V' is nov given by

(R(/R - 0.3Y1B/411 / * (3.13)

Values of this ratio as well as 1, s, and R. are shown in Table 2 for

L - 10": and - 10 and 100 . The required magnetic fields are

rather substantial. For R m 0.5 Cm , the values of 3 lie within aU

factor of 2 of each other for 1 - 100 and 1 - 10 , the latter again

being taken as a lower extreme.

We now apply Zqs. (3.12 and 3.13) to a low energy beam with

'YO -2 corresponding to a kinetic energy of 630 kev. An IP11 employing

such a lower energy beam will require an electromagnetic pump (viggler) and

the allowable energy spread will be much lower than that for a device

employing a fixed magnetic field wiggler. lesults are shown in Table 3 for

AV/1w 1-0"- . Only at very small radii is the beam in the mittance-

delnated regime, but 'r/r from the potential drop is megligible for the

allowed current levels. At Is 0.3 cm end 1.0 ca the beam Is In the

16



epace-chauGe do0matod regiMe, and If the AY/Y from the potential drop Io

not reduced. it is much larger then the 10-4 allowed.

TABLE 2

Values of I,3S., and (R.e/ a)2 calculated from Eqs. (3.12 and

3.13) for A/I I0- 2 , 1 10 and 100

l (cm ) I (k ) B (k G) ( R /R e).,

Y- 10 Yr - 100 ' - 10 1 - 100

0.1 .44 7.2 6.8 8. 75.
0.2 1.76 4.2 3.5 2.4 20.
0.5 11. 2.8 1.6 0.6 3.6
1.0 44. 2.5 1.0 0.3 1.1

TABLE 3

Values of IBR m  and (R )2 calculated from Eqs. (3.12 and 3.13)

for 1 - 2 and Ali) - 10- 4 . Note that I is in amperes.

Rn(cm) I(A) B(kG) (RCfRS )2

0.05 1.1 1.46 6.6
0.1 4.4 .87 1.9
0.2 17.6 .64 .7
0.5 110 .56 .25
1.0 440 .55 .12

We conclude that even with an emittance an order of magnitude

lower than that give" by Sq. (2.5) the current in a loy energy FEL t

seriously limited.

17



Am a final *mple we consider an rf ltnac. equation (2.5) gives

the amittence In term of the time average current, but the first term on

the right hand side of &q. (1.1) contaln the instantaneous, or peak.

current in a aicropulse. Squation (3.7) mast be modified to take this into

account. We have

2 R2  11.56 2 [2 Ipek /17 1 I ve) + (0.09/R2 ) (3.1)

For e " 0.1 ca , love - 4.4 A is required to create a current density

of 140 A/cu 2 . We take Iave - 2A * Ipeak a 20 A , i-u 0.1 ci,

- 40 , and obtain B 4 4.6 kG • From Eqs. (2.5 and 2.7) we have an

equivalent bi/ of 4 x 10- 3 , vhich is probably less than the actual

Ai! in such a device. So in this example, at ieast. the emittence is

not the major contributor to the axial velocity spread.
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IV FREt DRIFT AND WIGGLER FOCUSING

As we have seen In the previous section the solenoidal magnetic

fields necessary to transport the electron beam are generally a few kG.

Although such fields can certainly be achieved, experimental hardvare would

be more manageable if there were no solenoid surrounding the viggler. In

fact, a solenoidal field cannot be employed to transport the bean if the

wiggler consists of iron masnets. Let us first consider the consequences

of focusing the bear at the entrance to the wiggler so that a beam waist

occurs somewhere near the middle of the wiggler (or the interaction region

for an electromeanetic wiggler). The focusing could be accomplished vith a

quadruple doublet or trirlet.

If the beas. is in the emittance-dominated regime, we may neglect

the first ter on the right hand side of Eq. (1.1). In the drift region

92(t) - 0 and 9q. (1.1) is easily integrated. If we measure the axial

position a from the beam waist where the radius is ,v . we obtalin

1 (2) - I + (CIR .

v v

The behavior of the electron beam is the *s as that for the laser beau

mear the focus. The area of the beau doubles at a distance L froo the

waist, vith L given by

t9



L - 12/E . (4.2)w I

For a numerical example we use the "improved" emittance yea 0.03 11/2

Ve set . equal to Am and take the values of 3, and I from Table

2. For R- 0.2 cm and I - 1.76 kA we find L - * cm . For R - 0.5

cm and 1 - 11 kA , we find L - 2.5 r cc

The aumbers Indicate that the electron bea cannot be cast more

than a few meters. It might be possible to interrupt a magnetic wiggler

and insert additional focusing elements, but this must be done carefully in

order to preserve the phase of the electron beam with respect to the

pondermotive wave. In an FEL employing an electromagnetic wiggler, the

beam can be periodically focused with little difficulty.

Let us now examine the possibility of focusing the beat with the

wiggler itself. This concept was suggested by Phillips 5. In this

discussion we will merely give one example of a magnet configuration that

provides equal focusing in both transverse planes. The configuration is in

no way optimized in the sense of reducing the axial velocity spread arising

from finite emittance and energy spread.

In the following treatment we use the work of Ref. 3. We first

point out that a "square edge" wiggler as shown in Fig. I provides focusing

In the y direction but not in the a direction. Am defined in PIS. 1,

the magnetic field Is alternately In the *y direction causing particles

to oscillate in the x direction. Particles cross the edges at an angle,

20 I.
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FIGURE I

ORBIT OF REFERENCE PARTICLE IN A SQUARE-EDGE WIGGLER
WITH UNIFORM MAGNETIC FIELD.

FIGURE 2

ORBIT OF REFERENCE PARTICLE IN A NORMAL EDGE WIGGLER
WITH dlBl/dr -c 0.
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and If they are off the ndian plane (171 > O) they encounter a component

of magnetic field I. near the edge, and the v3zz force is focusing in

the y direction. The edge effect t defocusing in the z direction, but

the total focusing across the magnet Is zero.

Now consider the magnet configuration shown in Pig. 2. The

particles now cross the edges at a right angle, so that there is no

focusing or defocusing at the edges. The magnetic field in the magnet is

not uniform, but decreases with radius as shown in Fig. 2. For those

familiar with the terms, this is an n - 1/2 weak focusing bending

magnet. We define a reference orbit going through the magnets. This

particle crosses the edge at a right angle at the proper orbit radius

r - P for its energy. This is the particle for which the magnet is

designed--it is the "resonant" particle of the FEL. For the present we

vill neglect energy variations in the beam. Other particles near the

reference orbit are at a radius r - P + x . The equation of motion for

these particles is

d2x 2Zds2

in which s is defined as the distance along the reference orbit, and

U2 is defined by the relation
x

"1 +n , (4.4)

where n is the field index defined as "

22
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For a weak focusing bending magnet, dB/dr I negative and n is

positive.

The equation of motion in the y direction is

d2 j+ 2 a 0(4.6)

in which v2 - - n So if we make n - 1/2 , the focusing is the same in
y

both transverse directions. It is not at all clear that equal focusing in

the two planes is desirable in practice. For a planar wiggler it might be

desirable to make the emittance in y - y" less than in x - x' so that

less focusing is required for y motion. But for simplicity here we

choose v - v - 2-1/2 9 so that we need consider motion in onex y

direction.

If a particle has zo  and zo "  upon entering the first magnet,

it has x and x" leaving the first magnet and the values are related by

the matrix equation

x Co 14 (Pv~si 4- xQ)(4.7)
(X' - -(v/P)sin * cos * I (X)

Inthlsrelatlontheangle * - u , where 8 iethetotalbendingaugle

in the maignet. Although it Is obvious that the sme relation holds for

y motion in the second magnet, it takes a little thought to convince

23



oneself that it also holds for x sotion. by definition, both a and

x' change sign In the second magnet, but both 3 and d/dm also change

Sign.

A drift length d Is shov n in Fig. 2. The transformation matrix

for a drift is

Including the drift region in our calculation vould alter the results very

little if d << P , so ye rill neglect it for simplicity.

Since focusing is the same in both planes, the matched beam is

round and has a radius given by

(.')1/2 .- / (4 . oR 1121/

(If u € U , the maximum extent of the beam in z and y are• y

(PCxIvx)1 /2 and (PcY/v,) 1/2 respectively.) From Eq. (3.2) w have

2 J rPXw v . (4.10)

The quantity in parentheses is the same as that occurring in 1q. (2.6), and

for operation of an 1L is unity or close to it, so that Sq. (4.9) becomes

24
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FIGURE 3

CROSS4ECTION OF BEAM AT FOCUS IN aPLANE AFTER PASSING
THROUGH QUADRUPOLE #A). AND PHASE ELIPSES AT FOCUS IN a(b).
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I2 *. YIc/2s

or

af/ 21IR/X 4.1V

The left hand side of Eq. (4.11) is related to the equivalent h/ treated

in Section II. Employing Sq. (2.5) with u2 . 2 in Eq. (4.11) we find

112 . (4.12)

If we choose R/ satisfying this relation (e.g.

L),1 , Rp,'\ a 0.1 then the veak focusing wiggler magnets treated

here will transport the allowable current. For R/ v greater than that

necessary to satisfy Eq. (4.12), the viggler will transport more than the

a llovable current. There may be restrictions on the value of R/k arising

from the variation of By with y . A detailed analysis of the actual

field pattern will be necessary to determine this restriction, but

apparently even this simple wiggler design provides adequate focusing.

We point out that, if the drift space is included in the

calculation, the beam Is slightly larger in the center of the magnet and

slightly smaller in the center of the drift apace.

The discussion In Sec. 2 leads to a relation between the current

density and the masismm alloable A/y . Pro% Eqs. (2.5) and (4.11) w

26 I



can derive a relation between the beam current I and A We find

KI1/2 2?( 

(.

in which K has been taken as 3 x 10-2 in this section. The relation

holds for any K value and for focusing such that Eq. (4.12) is valid. It

is interesting to note that, for W2 . 2 , the contribution (A 1/y)w from

the variations of the wiggler magnetic field in the y direction is given

approximately by

0 ( R 2 (4.14)

Thus Eq. (4.11) shows that (/)I ) a condition that minimizes

the sur of the two contributions.

Further study of wiggler configurations will seek arrangements

that reduce the axial velocity spread caused by the emittance. It may be

possible to accomplish this in one plane only, preferably the z plane.

As mentioned above, Cy need not be as large as c • A bess in a storage

ring has E y< -c In a bean from a linac the emittance in one or both

planes may be reduced at the expense of lowering the current. Suppose ve

make the beam wide in the y direction and narrow in the x direction.

The easiest way to do this is to pass the beam through a quadrupole that

focuses in • and defocuses in y * The beam cross-section is shown in

Fi8. 3s, and the two phase elipsee in ng. 3b. In this configuration the

ben is placed through a slit as shown, reducing the aztant In y and

9 . If the y elipse is uniformly filled we reduce the total current
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by the same fraction that E it reduced. But generally the phase density7

is higher near the center of the alipse so that the reduction in current i

less. There is little or no reduction In E , but the process may be

repeated in the x plane if desired. This process would be particularly

useful if applied to the beau out of an induction linac, which carries more

current than can be used in an FEL.

In conclusion, we see that the solenoidal magnetic field necessary

to transport the allowed current in an FEL is at most a few kG. In this

section we have an existence proof that the focusing can also be

accomplished by shaping the magnetic field of the viggler.

Although an improvement in emittance is certainly desirable, the

results of Section III indicate that values of emittance currently achieved

in rf linacs will permit the use of these devices for an FEL used as an

oscillator. For an FEL employing a magnetic wiggler and operated as an

amplifier, an improvement of a factor of 3 to 10 in the smittance from

induction linacs Is desirable. For an TEL employing an electromagnetic

wiggler, such an Improvement in essential. An improvement of two orders of

magnitude would make these devices interesting.

We mention that the phase-displacemnt concept relaxes to some

extent the requiremant for sall fractional energy spread. With this

scheme particles are not trapped in stable phase with respect to the
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posdermotive mve, aud there 1o so connection between the effective nergy

spread and the Input sear pover. A larger enery spread does neceasitate

a longer wi1gler to extract the same energ per particle from all the

particles in the beas.

I-
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